Моделирование алгоритма управления в программном пакете математического моделирования MATHLAB

Универсальная система управления маслонапорной установкой гидроэлектростанции
Описание конструкции и функционирования маслонапорной установки ГЭС Описание устройства и функционирования МНУ Основные узлы МНУ Разработка системы управления МНУ Постановка основных задач синтеза системы управления МНУ Вопрос о ручном режиме управления Структурная схема системы управления Моделирование алгоритма управления в программном пакете математического моделирования MATHLAB Модель блока управления насосами Взаимодействие компонентов системы Создание программного кода Структура S7-300 Выбор модуля центрального процессора Цифровой модуль ввода SM 321; DI 16 24 VDC Выбор дискретных датчиков Датчик температуры в сливном баке Описание алгоритма работы мну Подпрограмма запуска компенсационного насоса Годовая экономия от внедрения АТК Правила техники безопасности при обслуживании сосудов, работающих под давлением Правила техники безопасности при обслуживании электрических частей МНУ Мероприятия по обеспечению электробезопасности МНУ Охрана окружающей среды
157854
знака
4
таблицы
9
изображений

3.2 Моделирование алгоритма управления в программном пакете математического моделирования MATHLAB

 

Логическую модель для проверки ее правильности реализуем в среде моделирования MATHLAB. Данный программный покат позволят простыми и наглядными средствами программы Simulink реализовать автоматически обкатываемую компьютером модель, с возможностью совершать вычислительные эксперименты с моделью.

Для начала разобьем модель на три функциональных модуля.

―        Модуль управления насосами;

―        Модуль управления пневмоклапанном;

―        Модуль управления температурой в сливном баке.

Указанные выше модули отражают весь алгоритм управления маслонапорной установкой. И осуществляя контроль за выходом параметров за аварийные рамки. Засорение фильтров и контроль положения клапана не производится, так как в модели не отражен режим генерации предупредительных сообщений и не учитываются возможные неполадки в механизмах. Так как нет возможности прогнозировать производительность МНУ и потребление масла ГЭС задавать значения контролируемых параметров будем с помощью генератора входного воздействии в форме синусоидального сигнала определенной частоты и амплитуды.

3.3 Модель блока управления пневмоклапанном

 

Для управления пневмоклапанном ГА МНУ соберем следующую модель в программе Simulink. Готовая модель представлена на рисунке. Для симуляции изменения уровня в гидроаккумуляторе соберем генератор вырабатывающий плавно возрастающую от 0 до 5 величину. Датчики уровня реализуем с помощью элементов типа Switch. Установим их момент переключения равный порядковому номеру датчиков уровня от 1 до 4, где первый и четвертый соответственно датчики аварийно низкого и высокого уровня масла в ГА, а второй и третий (на схеме два верхних) датчики ограничивающие диапазон нормального уровня масла в ГА. Для имитации работы дискретных датчиков подсоединим ко входам элементов switch элементы Constant со значениями Нелей и единиц, так чтобы при достижении уровнем какого либо датчика он переключал бы выходной сигнал с нуля на единицу. Таким образом, реализуется контроль уровня в ГА.

Алгоритм работы пневмоклапана предусматривает, что он открывается при достижении уровнем масла места установки датчика высокого уровня и закрывается, при уменьшении уровня до переключения датчика низкого уровня на ноль. Реализуем этот алгоритм используя сумматор сигналов датчиков уровня и релейный элемент. После суммирования получаем значения от 0 до двух, при этом значение 2 соответствует уровню жидкости выше верхнего, и требует открытия клапана, а 0 соответствует уровню ниже нижнего, то есть моменту закрытия клапана. Для распознования этих состояний используем релейный элемент, который выдает значения управляющего сигнала пневмоклапана равное единице при значении входного сигнала равном 2 и отключает при падении его до значения единицы.

Подключим на выходы с датчиков уровня и в релейного элемента Scope и запустим расчет модели. Полученные графики представлены на, где средняя линия – это сигнал управления пневмоклапанном. Анализ полученных результатов показывает, что управление клапаном реализовано правильно.

Затем для обработки аварийных состояний подключим к выходам Switch 7 и 6 логический элемент «или», а к нему элемент прекращения расчетов. Теперь при появлении сигнала аварийно низкого и высокого уровня происходит прекращение работы, то есть аварийная остановка.

 

3.4 Модель блока управления маслонагревателем и охладительной установкой

 

Используя элементы Simulink создадим модель модуля управления нагревателем и охладительной установкой. На рисунке Рис. 3.1 представлена схема модели.

 

Рис. 3.1

Модель состоит из генератора обеспечивающего изменение значения температуры по синусоидальному закону. Маслоохладителная установка должна включаться при достижении температуры уставки ее включения и отключаться при падении температуры до номинального уровня. контроль величины по диапазону начало и конец которого находятся на значительном расстоянии позволяет ограничить частоту включения и отключения оборудования, что увеличивает его ресурс. Для реализации такого алгоритма наиболее подходящим решением будет использование релейного элемента, так как он переключает выходной сигнал именно по такому закону. Подключим к релейному элементу выход генератора температуры и зададим уставки температуры при которых производится включения и отключения маслоохладителя.

Для управления маслонагревателем все выполняем аналогично, описанной выше модели блока управления маслоохладителем, за исключением того, что температура включения маслонагревателя меньше чем температура его отключения. Следовательно, для работы релейного элемента необходимо использовать обратные величины. Подключим к выходам релейных элементов и генератора Scope и снимем диаграмму работы модели (Рис. 3.2).

Рис. 3.2

Графики показывают, что включение и отключение оборудования производится своевременно.

Подключим к выходу генератора устройства контроля выхода температуры за допустимый режим.



Информация о работе «Универсальная система управления маслонапорной установкой гидроэлектростанции»
Раздел: Промышленность, производство
Количество знаков с пробелами: 157854
Количество таблиц: 4
Количество изображений: 9

0 комментариев


Наверх